
that you cannot price with mental arithmetic,
so that you can make bets on the value of the
parameters by executing the corresponding
trades in the corresponding instruments. Where
you should draw the boundary between a) cali-
brating your model to the market then using it
to price some other stuff relative to the initial
stuff, and b) imposing the parameters of the
model yourself and taking “absolute” positions
in the derivative instruments, is up to you and
your experience.)

In other words, smile dynamics is a “price,”
just as implied volatility is a price, or the
implied yield curve is a price, or the implied
credit spread curve is a price. And you have to

handle it the same way you usually handle a
price that the market offers you. You bet against
it, or you use it in a strategy to help determine
the price of other things. And what market
prices can help us imply the smile dynamics?  (In
other words, what current spot market informa-
tion can help us infer the market prediction of
the future evolution of the smile? ) Answer: the
spot market prices of the barrier options, or the
spot prices of the forward starting options, or
similar path-dependent objects.

Why not the vanillas? 
As explained in the article “Can anyone solve the
smile problem?” the spot market prices of the
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T
he following article is a transcrip-
tion of one of my posts (to this day,
the longest) on the Wilmott
forums. The thread it appeared in,
“Of smile and models,” is one of the
multiple recent threads where wor-

ries and questions are starting to emerge, relative
to the smile dynamics. The big worry is: “It is one
thing to calibrate my smile model to the vanillas
right, it is another to get the smile dynamics
right, and the prices of path-dependent options
right.” As this big question was the question that
my co-authors and myself had tried to address in
our article “Can anyone solve the smile prob-
lem?” and the thread was a discussion of issues
raised by the article, I thought I would take
advantage of my column today and re-edit my
post as a post-scriptum to the article. 

What is the right smile dynamics? 
There is no theoretically right or wrong smile
dynamics. The only “right” smile dynamics is the
smile dynamics as implied by the market.

(Of course, I am here siding with the view
that the market is always right. I will not be
debating the issue of whether you should believe
your model rather than the market, then trade
the model’s predictions against the market. I
agree, the market cannot always be right. Models
are just tools to help you connect the value of
some parameters describing the stochastic
process with the values of derivative instruments

A return to issues raised by

an article published in

January last year

Can Anyone Solve The 
Smile Problem? A Post-Scriptum



vanillas, even a continuum of such vanillas
C(K, T), just map the probabilities of traveling
from current spot and current time to the point
located at (K, T). Let us call this transition proba-
bility P(S0, t0, K, T). The vanillas give you no infor-
mation about the path. In other words, you have
no idea about forward probabilities such as
P(S, t, K, T). As you observe the world from (S0, t0),
you have no idea what the probability of ending
up at (K, T) may be, conditionally on finding
yourself sitting at spot S, at a future time t (which
is prior to T, of course). As the probabilities of
ending up at (K, T) starting your trip from (S, t)
map into the vanilla options prices, all we are say-
ing is that, given the spot prices of the vanillas
C(S0, t0, K, T), you have no idea what their future
prices C(S, t, K, T) will be. One more time: Given
the spot implied volatility smile, you have no idea
what the future implied volatility smile will be.
You have no idea of the smile dynamics. The only
constraint the vanilla prices C(S0, t0, K, T), or
equivalently the spot transition probabilities
P(S0, t0, K, T), impose on the future transition
probabilities P(S, t, K, T) is the law of compound
probabilities. The probability of moving from
(t0, S0) to (t1, S1), and the probability of moving
from (t1, S1) to (t2, S2), should be linked to the
probability of moving straight from (t0, S0) to
(t2, S2). But there is complete underdetermina-
tion of the second, given the first and the third.
Two models can perfectly agree on both
P(S0, t0, S1, t1) and P(S0, t0, S2, t2) and disagree on
P(S1, t1, S2, t2). For instance, the underlying can
suddenly jump in between the future dates t1 and
t2 and hit a barrier, in one of the two models, and
not jump in the other. Barrier option prices will
then be different.

Sounds shocking? 
Is not the purpose of option pricing models and
option pricing theory precisely to give us the evo-
lution of prices of options at future times and dif-
ferent states of the world?  Indeed so. But this is
precisely where model-dependency kicks in.
While they can be made to agree on C(S0, t0, K, T),
or the spot implied volatility surface, different
models of stochastic behavior of the underlying,
can very well disagree on C(S, t, K, T), or smile
dynamics. So we might as well elevate ourselves

for a while and take a completely model inde-
pendent (or completely non-parametric) view of
option pricing.

Fully non-parametric option 
pricing model
Let us imagine a discrete space and time grid for
simplicity. We start out at (S0, t0). A fully non-
parametric option pricing model is a model
where it is completely free what the future transi-
tion probabilities P(Si, tj, Sl, tm) should be.
((i, j, l, m) are our discrete indices.) In other
words, a model where you can assign any matrix
of transition probabilities from states (Si) at time
tj to states (Sl) at the following time tj+1.
(Compounding of probability will apply of
course.) If your time horizon is discretized into N
time slices and your space grid into M grid
points, you model will have N × M × M parame-
ters, more or less. (In fact, N × M × (M − 1), as
probabilities sum to one). NOT MENTIONING that
the price of the underlying, S, may not be the
only state variable. Other state variables may
come into play, for instance instantaneous
volatility, or instantaneous interest rate, or
instantaneous hazard rate, or the indicator indi-
cating whether the underlying name is in default
or not, etc.. In other words, the matrices 7
P(Si, tj, Sl, tj+1) might as well have to be indexed by
(v, r, h, ...) the n-tuple of extra state variables that

we assume are discretized too:
P[v, r, h, . . .](Si, tj, Sl, tj+1), and the probabilities of
moving between different n-tuples (v, r, h, . . .)

will have to be given too. The number of parame-
ters will grow accordingly.

Option pricing models (local volatility,
Heston, Merton, Bates, Pan Duffie Singleton, etc.)
are just particular parametrizations of this fully
non-parametric picture! 

Risk-neutral vs. Real probability
This is not all. Indeed, I have said nothing about
whether the probabilities in question are risk-
neutral or real. Let us assume they are real. (What
else?). Then, given the payoff of my particular
derivative instrument (and this payoff may be
anything, for instance the instrument can pay off
differently in different states of volatility, or
knock-out at certain barriers, or it can pay off dif-
ferently in case of default, for instance a convert-
ible bond can be restructured in case of default,
or it can be knocked-out, etc.), given the payoff, I
can certainly compute the discounted mathe-
matical expectation of that payoff, through my
very complex chain of transition matrices, and
transitions between n-tuples indexing my transi-
tion matrices.

A mathematical expectation, however, is not a
price. People may be risk-averse or risk-lovers and
not expect the utility of expectation to be equal to
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A mathematical expectation, however, is
not a price. People may be risk-averse or
risk-lovers and not expect the utility of
expectation to be equal to the expectation
of utilities. While all people agree on the
price of the underlying, they may not agree
on the prices of lotteries written on that
underlying, i.e. derivative instruments
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the expectation of utilities. While all people agree
on the price of the underlying, they may not
agree on the prices of lotteries written on that
underlying, i.e. derivative instruments. As a mat-
ter of fact, different people with different utility
functions can produce different families of prices
of derivative instruments, under the sole con-
straint that the family of prices that any such
agent is producing may not generate internal
arbitrage opportunities. (In other words, my
option prices may turn out completely different
from yours, yet you cannot arbitrage me by simul-
taneously selling and buying from me, on the
prices I produce. You may think you can arbitrage
me, of course. According to your model, that is.)

There is a powerful theorem which says that a
sufficient and necessary condition for the family
of derivative instruments prices produced by any
one agent not to generate internal arbitrage
opportunities is that those prices may be formal-
ly written as the discounted expectation of the
payoff under some probability. This guarantees
positivity and linearity (which are the minimum
requirements). There are of course, many such
expectation operators. As many as there are dif-
ferent combinations of choices of transition
matrices between our states of the world. Or as
many as there are changes of probability meas-
ure, which can map the real probabilities into
some other measure.

Since your derivative instrument prices are
being represented as the discounted mathemati-

cal expectation of their payoff under the proba-
bility measure corresponding to your family of
prices by the theorem above (assuming your
prices do not violate non arbitrage), it all looks as
if you were risk-neutral under this probability
measure, as far as the prices of lotteries written
on the underlying are concerned. This is the rea-
son why probability measures that people use to
express option prices as expectations of payoff
are called “risk-neutral probability measures.”

Why do we need the real 
probabilities then? 
In order to hedge. You need them as soon as you
start worrying about the unfolding of time and
P&L. Only when you start worrying about con-
necting the evolution of the option price you are
producing (or believing, or picking, or trading,
etc.) to the evolution of the price of the underly-
ing (or, for that matter, to the evolution of the
price of any other instrument), in order to some-
how compensate the one with the other, or bal-
ance the P&L of the one with the P&L from the
other, you will start worrying about the real
price dynamics, or the real probability. Real P&L
and price movements take place in the real
world, under the real probability. The risk-neu-
tral probability, which is just a pricing operator,
can only provide you with a formula such as
V(S, v, r, h, ..., t), linking the value of your deriva-
tive instrument with the value of the state vari-
ables, through time. The delta ∂V/∂S will only
hedge you against continuous movement of the
underlying S. It won’t hedge you against jumps in
S, or against changes of volatility, or default, or
restructuring, or extraordinary dividends, etc.

Granted, you can use additional hedging
instruments and construct a portfolio such that
the other partial derivatives of your risk-neutral
pricing operator, ∂V/∂v, ∂V/∂r, ..., are immu-
nized. And then risk-neutral pricing will again
coincide with perfect hedging and the detour in
the real probability measure will not be needed.
But I claim you shouldn’t complete the market
this way, right from the start. I’d rather hedge my
instrument optimally not perfectly, with a small
number of hedging instruments, and control the
standard deviation of the P&L by minimizing it
and estimating this minimum, than entertain

I’d rather hedge my instrument optimally
not perfectly, with a small number of
hedging instruments, and control the
standard deviation of the P&L by 
minimizing it and estimating this 
minimum, than entertain the illusion 
that the standard deviation is zero
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using a different value σ ′ in the BS formula!  And
there will be as many different price families as
there are different values σ ′

How do we become model-
independent again? 
Going back to the full non-parametric picture
described above – and this means that the under-
lying dynamics can be any wild Markovian
process you may think of: jump-diffusion, sto-
chastic volatility, etc. – we would achieve model-
independence if we had as many option prices
available in the market as we had parameters (for
instance, N × M × M in the case where the under-
lying is the sole state variable), to help us cali-
brate our parameters. And the options will have
to be independent of each other. And by that I
mean that it would not help to add options that
you can replicate, in a model-independent way,

with options you have already picked. If the
vanillas are available, it would not help you
adding call spreads, or butterflies, to the calibra-
tion set. (So to answer the frequently asked ques-
tion about the American digital, or one-touch,
being statically perfectly replicable by vanillas,
therefore dependent only on the spot vanilla
smile and no smile dynamics, we should go
check whether the static replication argument
that is being invoked doesn’t itself depend on
some hidden diffusion assumption... In other
words, adding the American digitals, or general-

the illusion that the standard deviation is zero.
Optimal hedging (as opposed to perfect) in
incomplete markets, and control of the standard
deviation, ensure that the hedging is robust. Also
it is always a precious piece of information to
know how an additional hedging instrument can
improve your hedging strategy. If you start out
with (what you think is) a perfect hedging strate-
gy, this information becomes irrelevant.

One approach to option pricing, or in other
words, to producing the pricing operator of
derivative instruments, or the risk-neutral proba-
bility, is the following. In the real probability and
the real dynamics (as given by my complex com-
bination of matrices of real transition probabili-
ties above), work out, by stochastic control, some
self-financing dynamic strategy involving, say,
the underlying, which will optimally hedge the
real P&L of my derivative instrument, in some
sense of optimality. For instance, you can pick as
criterion the dynamic hedging strategy which
will make you break-even on average, in the real
world, and guarantee that the standard devia-
tion of your P&L is minimum. It is then up to you
to quote as price for your derivative instrument,
the initial cost of this self-financing strategy. We
can show that this “initial cost of optimal dynam-
ic hedging strategy” has the properties of a dis-
counted expectation operator, therefore can act
as pricing operator, or risk-neutral probability.

Black-Scholes or local volatility
Like I said, different option pricing models are
just different parametrizations of the overly non-
parametric picture above. If you assume diffu-
sion for the underlying dynamics, as character-
ized by a diffusion coefficient σ (S, t), and no
other source of uncertainty, then the underdeter-
mination of transition probabilities mentioned
earlier disappears. The forward Kolmogorov
equation, governing the probabilities P(S, t, K, T),
has σ (S, t) as sole coefficient. Given the family of
values P(S0, t0, K, T), or in other words, the vanil-
la option prices, one can invert the Kolmogorov
equation and map σ (K, T) – or σ (S, t) after re-
labelling – completely. (This is the essence of
Dupire’s formula.) The knowledge of σ (S, t) then
completes the knowledge of the underlying
dynamics (because we have assumed diffusion,

and nothing else). This, in turn, determines com-
pletely the whole future, the whole future transi-
tion probabilities, and the smile dynamics, there-
by imposing the prices of what other derivative
instruments are left, namely the exotics.

All we are saying is that local volatility hap-
pens to parameterize the overly non-parametric
picture above with just the right number of
parameters σ (Si, tj) for the knowledge of C(Ki, Tj)

to be sufficient for determining the value of
those parameters. You can see now what com-
plete misrepresentation this is, to think that
local volatility is the one non-parametric model! 

There is additionally an important gain. The
optimal dynamic, self-financing hedging strate-
gy mentioned above happens to be perfect under
the diffusion assumption. You can always perfect-
ly replicate any derivative instrument with the
help of the underlying alone!  Although the fami-

ly of prices of derivative instruments that other
agents are producing may not generate internal
arbitrage opportunities, those agents have no
choice now but to agree with the family of prices
you are producing with your optimal (in fact, per-
fect) hedging strategy. Otherwise, you would arbi-
trage them against the underlying!  However, if
hedging were forbidden in the Black-Scholes
world, then families would multiply again!  Even
though the real volatility of the underlying
should be known to be σ , nothing would stop me
indeed from quoting non-arbitrage option prices

And this is not the end of the story. For
even if such a huge number of options 
and options prices were available, we
would still be model-dependent to the
extent that we would only be calibrating
risk-neutral transition probability 
matrices from those prices! 
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prices were available, we would still be model-
dependent to the extent that we would only be
calibrating risk-neutral transition probability
matrices from those prices!  We would still 
have to “independently depend” on some model
of utility function, or some hedging rationale,
etc., to access the real world of hedging and 
P&L. Admittedly we wouldn’t need that extra
step if the sole purpose or our calibrated model
is the pricing of some other stuff relative to the
given stuff.

Other models (Heston, Merton,
Heston with jumps, etc.)
So what do other smile models achieve, and how
do they differ from each other with respect to

smile dynamics?  To repeat, different option pric-
ing models are just different parametrizations of
the overly non-parametric picture above.
Stochastic volatility models offer a parametriza-
tion of different nature to local volatility.

Let us first assume, therefore, two state vari-
ables (S, v), without first specifying the meaning
of v. And suppose v is discretized on a grid with P
points. You can think of v as some abstract index,
or a regime, indexing what used to be the situa-
tion “where the underlying was the sole state
variable.” At each time period tk, we now need a
transition probability matrix to govern the tran-
sition from (Si, vj) to (Si′, vj′) at time tk+1. We are
talking about a number of entries of order
M × P × M × P for that matrix!  Therefore, there
are now something like N × M × M × P × P
parameters in total.

We said that, for fixed v , the underlying can
follow any dynamics such that “the underlying is
the sole state variable.” (This is almost a tautol-
ogy). Imagine, for instance, that the underlying
diffuses with coefficient σ (S, t) in each of the
regimes v. To be exact, we should index the local
volatility functions σ (S, t) prevailing in each
regime with the regime label, and write σ (v, S, t)
in all rigour. Assuming diffusion in each regime
reduces the number of parameters to N × M in
each regime, as we’ve already seen. However, we
still have P × P different ways of assigning transi-
tion probabilities from the collection of regimes
(vj) at time tk to the collection (vj′) at time tk+1.
Perhaps v can be assumed to be diffusing in turn,
therefore further reducing the degrees of free-
dom. Let us call ν(v, S, t)the diffusion coefficient
of v. And perhaps the diffusion of v is correlated
with the diffusion of S, through ρ(v, S, t). And
perhaps v should be mean-reverting in order that
it doesn’t blow up. And while we are at it, why
not go all the way and assume that:
● σ (v, S, t) is constant in each regime v, why not
propose σ (v) = v; in other words the states v, or
the regimes v, are just states of instantaneous
volatility of the underlying. 
● ν, ρ, mean-reversion, etc., are constant across
the whole state space (S, v).

This is exactly the description of a stochastic
volatility model à la Heston.

We can try and rehearse the steps of parame-
trization that helped us reduce the number of
parameters from the wild N × M × M × P × P pic-
ture down to the four or five parameters charac-
teristic of Heston. First, the diffusion assumption
was in itself a restraining parametrization. We
then assumed diffusion for both the state vari-
ables S and v. And finally the coefficients of this
double diffusion process were assumed to be con-
stant. People who think the vanillas are enough
to calibrate the Heston model, should by contrast
think of a situation where all the coefficients of
Heston (vol of vol, correlation, mean reversion,
long-term vol, etc.) are made function of the two
state variables. Not forgetting that there is a dou-
ble diffusion assumption at work here!  Indeed,
volatility can jump too, not in a uniform or
orderly fashion, but correlated with jumps in the
underlying, etc. etc.
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ly the barrier options, will help expand our cali-
bration set beyond the vanillas, for we cannot
replicate them with the vanillas in a model-inde-
pendent fashion).

This is a huge number of options we are talk-
ing about. For instance, when the underlying is
the sole state variable (and this is hardly realistic),
the knowledge of prices of, say, all knock-out call
options C(K, B, T) (where K is the strike, B the bar-
rier level) is in theory sufficient to calibrate a
fully non-parametric model. Now think that the
whole point is precisely to price those barrier
options, so how can we possibly require that their
prices be fully available? !  (In a way, it seems no
model can price the barrier options in a model-
independent fashion (! ). Only the market can.)

And this is not the end of the story. For even if
such a huge number of options and options

The reason for the discrepancy on the
exotics is not that the models slightly 
differ on the vanillas and these little 
differences explode on the exotics! The
reason is that the models massively differ
on the exotics to begin with
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When you calibrate a stochastic volatility
model such as Heston, or a jump-diffusion model
such as Merton, or some model combining the
two features, such as Bates or Pan Duffie
Singleton, etc., to the vanillas, all you are doing
in effect is finding the value of the few constant
parameters which are left free (vol of vol, correla-
tion, intensity of jumps, moments of the distribu-
tion of jump sizes, etc.), through some search
procedure which minimizes the distance
between the model vanilla prices and the market
vanilla prices. But you have to keep in mind that
the huge parametrization step, from the wild
non-parametric picture to the few parameters
that are left for calibration, is completely model-
dependent!  When you first select Heston, or
Merton, or Bates, etc., then turn to calibration,
you have already committed yourself to a huge
prescription as to how the conditional transition
matrices should behave.

So what happens in practice? 
In practice, you calibrate a parsimonious model
(say Heston with five parameters) to a large num-
ber of vanilla options. Your minimization proce-
dure converges to a local minimum. The vanillas
are not exactly matched, of course, given the
small number of parameters compared to the
number of options. You calibrate another parsi-
monious model, say Pan Duffie Singleton, and fit
the vanillas almost as well, only with a different
distribution of calibration errors. You subse-
quently price the exotics and observe large differ-
ences between the models!  

The reason for the discrepancy on the exotics
is not that the models slightly differ on the vanil-
las and these little differences explode on the
exotics!   The reason is that the models massively
differ on the exotics to begin with, in other words
they are structurally different from each other as
far as the smile dynamics, or conditional transi-
tion matrices, are concerned, and the calibration
procedure is only succeeding in getting them
this much in agreement on the vanillas!  You
could alternatively make them agree on the
exotics by calibrating them to the exotics, but
then they will diverge elsewhere. The unstated
reason why people calibrate them to the vanillas,
is that analytical or semi-analytical formulae are

only available for the vanillas! 
The situation is even worse than you think.

You may start selecting a complex model like Pan
Duffie Singleton, which includes stochastic
volatility correlated with the underlying, jumps
in the underlying, jumps in volatility correlated
with jumps in the underlying. Different empiri-
cal studies seem to suggest that this class of mod-
els are best for explaining the option smiles. You
may then calibrate the model to the vanillas
through the usual minimization procedure. As
the vanilla prices are empirical (i.e. they contain
noise and are not nearly as neat as the prices pro-
duced by some theoretical model), chances are
the cost function will admit of several local mini-
ma. In other words, if you initialize your proce-
dure with different guesses on the model param-
eters, chances are you will find a different solu-
tion. Now each of the two solutions fits the vanil-
la smile almost as satisfactorily as the other, yet
with a different distribution of calibration errors
(for we are talking about two different local mini-
ma). And chances are that these two solutions
will yield completely different smile dynamics,
or in other words, different exotic prices. The
article “Can anyone solve the smile problem? ”
describes, with numerical detail, one such
predicament. And it will not help at all, but only
make things worse, to try to find the global mini-
mum, as some have suggested, for you would
only be calibrating noise, mindlessly of the
exotics! 

Can anyone solve the smile prob-
lem, then? 

It seems there is no way but to find a model that
you may calibrate to both the vanillas and the
exotics. Recall that the ideal solution is to adopt
the fully non-parametric model and require as
many option market prices to calibrate it against
as there are degrees of freedom. This is unrealis-
tic, so the optimal solution should lie some-
where in between. And there is no reason why
this practical model should follow along the
lines of Heston, or Merton, or any similar para-
metric structure. Since the analytical solvability
of the model is given up anyway (as far as the
exotics are concerned), we might as well chose a
structure which is best adapted to the given prob-
lem. We believe the regime-switching model pro-
vides such a platform.

Finally, with respect to the question of agree-
ment of the models on the hedging strategies,
recall that the delta V is only a partial derivative
and far from being a hedge. Hedges have to be
worked out in incomplete markets in some sense
of optimality of hedging. “Can anyone solve the
smile problem?” shows that models that disagree
on the smile dynamics while agreeing on the
spot implied volatility surface will in general dis-
agree on the exotics and the hedging strategies
(in the full sense of hedging in incomplete mar-
kets). Even two instances of the same model,
reflecting two local minima of the vanilla cali-
bration procedure, will differ on the hedging
strategy. Two models (or two local minima of the
same model) can even agree on both the vanilla
smile and the deltas of the vanillas (typically
when the models are homogeneous – by Euler’s
theorem), yet disagree on the hedging strategy! W

Recall that the ideal solution is to adopt the
fully non-parametric model and require as
many option market prices to calibrate it
against as there are degrees of freedom.
This is unrealistic, so the optimal solution
should lie somewhere in between


